
Journal of Computational Physics 201 (2004) 573–585

www.elsevier.com/locate/jcp
A parallel/recursive algorithm

W.R. Gibbs *

New Mexico State University, Las Cruces, NM 88003, USA

Received 29 December 2003; received in revised form 15 June 2004; accepted 16 June 2004

Available online 23 July 2004
Abstract

An algorithm is discussed for converting a class of recursive processes to a parallel system. It is argued that this al-

gorithm can be superior to certain methods currently found in the literature for an important subset of problems. The

cases of homogeneous and non-homogeneous two term recursions are treated. The basic cost factor of the algorithm

over non-parallel operations is 2 if only the final values of the sequence is needed and 4 if all elements are required.

In practice, these factors can be reduced considerably. Applications to three problems (finding the eigenvalues of a

tri-diagonal matrix, the solution of a radial wave equation and the solution of a tri-diagonal matrix) are discussed.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

The solution of some problems requires a greater number of operations for an appropriate parallel al-

gorithm than one that would be used in a strictly serial calculation. A gain in speed can still be expected by

running them on a parallel machine but there is a cost factor since one cannot expect to achieve an increase
in speed equal to the number of processors when compared with the best non-parallel algorithm.

As an example, consider two term iteration
0021-9

doi:10.

* Te

E-m
xiþ1 ¼ aixi þ bixi�1; i ¼ 1; 2; . . . ;N : ð1Þ

One method suggested in the literature [1] is to replace the steps in the algorithm by matrix multiplication.

This algorithm requires extra operations which will be discussed further at the end of Section 2.1.

Another possible algorithm (the one considered here) is based on the fact that there are only two inde-
pendent solutions to Eq. (1). The proper linear combination of them to represent the actual solution can be
991/$ - see front matter � 2004 Elsevier Inc. All rights reserved.

1016/j.jcp.2004.06.008

l.: +1-505-646-6711; fax: +1-505-646-1935.

ail address: gibbs@nmsu.edu.

mailto:gibbs@nmsu.edu.

574 W.R. Gibbs / Journal of Computational Physics 201 (2004) 573–585
determined by the starting values. In this paper, the application of such an algorithm for Eq. (1), as well as a

similar one for the iteration when there is an additional term, ci, on the right-hand side, is discussed.
2. General description of the algorithm

2.1. Homogeneous case

A recursion relation, such as Eq. (1), can be viewed as one long sequence of values which leads from a

beginning pair of values to the end. A desirable procedure for a parallel system would be to cut up this

sequence into separate strips (as many as there are processors) and let each processor work through its part

independently. For the first processor, there is no problem since the starting values are known there. But the

second processor (and the rest) will not have their starting values available (the final values in the previous
processor), so this procedure does not seem possible. With a moderate expense, however, it can be done.

Since there are only two independent solutions of Eq. (1) we can construct two (arbitrary but independent)

solutions, which will provide basis functions, and combine them when the starting values for each processor

are known from the result of the previous one. For simplicity, consider the same algorithm running on all

processors ignoring the fact that it could be computed more efficiently on the first processor.

Let the total length of the recursion relation be N+2 (including the first two starting values, hence the 2)

with M processors. Each processor will be assigned a recursion of length L=N/M which is supposed to be

integer and large. The work to be done by each processor will be proportional to M since it never has to
calculate the first two values. In order to see how such an algorithm works, let us analyze a (very modest)

system of 32 recursion steps to be calculated with four processors.

Each processor will do the recursion twice, once with starting values 0 and 1 and once with values 1 and

0. That is, each processor calculates the two basis functions starting with the first two values (1,0) and (0,1).

It uses the appropriate values of ai and bi for its position in the global sequence, of course. For the first

processor, the basis functions start with
y100 ¼ 1; y101 ¼ 0 and y010 ¼ 0; y011 ¼ 1: ð2Þ

Since any solution of the recursive formula can be written as a linear combination of the two basis functions
xi ¼ ay10i þ by01i ; ð3Þ

we can see from the definition of the initial values in the first processor that
x0 ¼ a; x1 ¼ b; ð4Þ

where x0 and x1 are the starting values for Eq. (1). We could find all of the values of the function in the first

processor by calculating
xi ¼ x0y10i þ x1y01i First Processor i ¼ 0; 1; . . . ; 8; 9 ð5Þ

but it is better not to do that immediately. Since each value is independent, we may calculate only the last

two values if we wish. These would be, in this simple case, x8 and x9. Notice that these are the starting val-

ues for the second processor. Thus, for the second processor since it started with y108 ¼ 1;
y109 ¼ 0 and y018 ¼ 0; y019 ¼ 1 choosing the proper linear combination (a and b) to give the true values of
x8 and x9 (known from the first processor) again we could calculate all of the values
xi ¼ x8y10i þ x9y01i Second Processor i ¼ 8; 9; . . . ; 16; 17: ð6Þ

Again, we need calculate only the last two (x16 and x17) to get the starting values for the third processor.

From these, we obtain the last values in the third processor x24 and x25 and the fourth processor x32 and

x33. Thus, we have found the last two values of the sequence with the evaluation (after the parallel compu-

W.R. Gibbs / Journal of Computational Physics 201 (2004) 573–585 575
tations) of eight equations. For four processors, there will always be eight equations regardless of the length

of iteration, L, within each processor.

Table 1 gives the operations explicitly for this small example. In this case, each processor has only eight

iterations to do. In a more practical, example numbers more like 106 might be expected. The table lists the

initial conditions at the top followed by the iterations. The generic variable, y, indicates both y01 and y10 are
to be calculated.

After this work has been done the following sequential steps need to be taken using only the last two

values taken from each processor.
Table

Examp

Proces

y010 ¼ 0

y100 ¼ 1

y2=a1y

y3=a2y
..
.

y7=a6y

y8=a7y

y9=a8y
x8 ¼ x0y108 þ x1y018 ; x9 ¼ x0y109 þ x1y019 ;

x16 ¼ x8y1016 þ x9y0116; x17 ¼ x8y1017 þ x9y0117;

x24 ¼ x16y1024 þ x17y0124; x25 ¼ x16y1025 þ x17y0125;

x32 ¼ x24y1032 þ x25y0132; x33 ¼ x24y1033 þ x25y0133:
The absolute indices have been used above on the basis functions. It is often more convenient to use a com-

bination of the local index and the processor number. The local index will be denoted by k and runs from 0

to L+1.

In general, only two values in any processor need be computed to find the starting values and hence the
coefficients of the two basis functions for the next processor. So the serial overhead is only twice 3 floating

point operations per processor. Even if all of the values of the sequence are needed, it is better to do this

operation first, because the intermediate values can then be found in parallel using the starting values ob-

tained in this way.

Repeating the above argument for the general case with M processors labeled l=0,1,2, . . .,M�1 and

N+2 total values of the indices of xi, the resulting sequences are calculated in a (long) parallel calculation,
ly10k and ly01k ; k ¼ 2; 3; . . . ; Lþ 1; ½l ¼ 0; 1; . . . ;M � 1�: ð7Þ

The square brackets indicate that the calculations for the different values of l are done in parallel. After this

step, the equations()

xðlþ1ÞL ¼ xlLly10L þ xlLþ1

ly01L ; xðlþ1ÞLþ1 ¼ xlLly10Lþ1 þ xllLþ1y
01
Lþ1

l¼0;1;...;M�1

ð8Þ
are evaluated in a (short) sequential calculation. The number of equations is always twice the number of

processors. The values of x have been written with absolute indices but we may use a notation for individ-

ual processors. The pre-superscript l as used above denotes results from a given processor l so we could

write equally valid representations of x as
xlLþk ¼ lxk: ð9Þ
1

le of the algorithm for a small number of processors

sor 0 Processor 1 Processor 2 Processor 3

; y011 ¼ 1 y018 ¼ 0; y019 ¼ 1 y0116 ¼ 0; y0117 ¼ 1 y0124 ¼ 0; y0125 ¼ 1

; y101 ¼ 0 y108 ¼ 1; y109 ¼ 0 y1016 ¼ 1; y1017 ¼ 0 y1024 ¼ 1; y1025 ¼ 0

1+b1y0 y10=a9y9+b9y8 y18=a17y17+b17y16 y26=a25y25+b25y24

2+b2y1 y11=a10y10+b10y9 y19=a18y18+b18y17 y27=a26y26+b26y25
..
. ..

. ..
.

6+b6y5 y15=a14y14+b14y13 y23=a22y22+b22y21 y31=a30y30+b30y29

7+b7y6 y16=a15y15+b15y14 y24=a23y23+b23y22 y32=a31y31+b31y30

8+b8y7 y17=a16y16+b16y15 y25=a24y24+b24y23 y33=a32y32+b32y31

576 W.R. Gibbs / Journal of Computational Physics 201 (2004) 573–585
In matrix notation, we may write Eqs. (8) as
Table

Strip i

n

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Colum

operat

single

tation
lþ1x0
lþ1x1

� �
¼

ly10L
ly01L

ly10Lþ1
ly01Lþ1

 !
lx0
lx1

� �
l¼0;1;...;M�1

: ð10Þ
Table 2 shows the ratios of completion times to the purely sequential case to be expected with various

recursion lengths and number of processors. The increase in speed over scalar is M/2 for large N. One sees

that for moderate numbers of iterations, the scaling efficiency starts to fall of for a number of processors

beyond 64. Thus, for most practical problems, the algorithm is expected to work best for relatively large

numbers of iterations and a modest number of processors. This loss comes, of course, because of the need
to compute the matching relations which requires a time proportional to the number of processors. The

algorithm could be modified to spread this matching procedure over a number of processors but this exten-

sion is beyond the scope of the present work.

If only the end value of the sequence is needed one can stop at this point (the ‘‘short form’’ of the algo-

rithm). This factor of two cost is not the best that can be obtained if the values of ai and bi are being cal-

culated along with the iteration. The same values of these coefficients are used in each iteration and, if the

time for the calculation of the coefficients is significant, the overhead to calculate two iterations rather than

one (as would happen if the calculation were not in parallel) may be small.
The latency part of the communication time is proportional to L=M/N, so, for a fixed, moderate, num-

ber of processors and large N it may be made very small. There are four words per processor to be sent in

order to make the connection between segments.

At this point (if needed) one can proceed to calculate the entire sequence of values in a second parallel

calculation (the ‘‘long form’’ of the algorithm). These will be given by
lxk ¼ xlLþk ¼ xlLly10k þ xlLþ1
ly01k ; k ¼ 2; 3; . . . ; Lþ 1; ½l ¼ 0; 1; . . . ;M � 1�: ð11Þ
These evaluations come at the cost of an additional 3L floating point operations per processor, roughly a

cost factor of 4, i.e., the speed increase is M/4 compared to the pure sequential algorithm. This cost can be

reduced greatly in certain cases as we shall see later. It may be useful to leave the strip functions (or even the

strip basis functions) in the processor where they were calculated.
2

teration algorithm

N=2n Sequential m=2 m=3 m=4 m=5 m=6 m=7 m=8

128 384 0.5625 0.3750 0.3750 0.5625 1.0312 1.0000 1.0000

256 768 0.5312 0.3125 0.2500 0.3125 0.5312 1.0156 1.0000

512 1536 0.5156 0.2812 0.1875 0.1875 0.2812 0.5156 1.0078

1024 3072 0.5078 0.2656 0.1562 0.1250 0.1562 0.2656 0.5078

2048 6144 0.5039 0.2578 0.1406 0.0938 0.0938 0.1406 0.2578

4096 12,288 0.5020 0.2539 0.1328 0.0781 0.0625 0.0781 0.1328

8192 24,576 0.5010 0.2520 0.1289 0.0703 0.0469 0.0469 0.0703

16,384 49,152 0.5005 0.2510 0.1270 0.0664 0.0391 0.0312 0.0391

32,768 98,304 0.5002 0.2505 0.1260 0.0645 0.0352 0.0234 0.0234

65,536 19,6608 0.5001 0.2502 0.1255 0.0635 0.0332 0.0195 0.0156

131,072 393,216 0.5001 0.2501 0.1252 0.0630 0.0322 0.0176 0.0117

262,144 786,432 0.5000 0.2501 0.1251 0.0627 0.0317 0.0166 0.0098

524,288 1,572,864 0.5000 0.2500 0.1251 0.0626 0.0315 0.0161 0.0088

1,048,576 3,145,728 0.5000 0.2500 0.1250 0.0626 0.0314 0.0159 0.0083

n 3 gives the time to completion for straight iteration in one processor in units of the time required for one floating point

ion. Columns 4–10 give the ratio of the time to completion to the corresponding time for a purely sequential realization on a

processor (column 3). The number of iterations is N=2n with a number of processors M=2m. This ‘‘power of two’’ represen-

is only for simplicity and is not needed for the algorithm.

W.R. Gibbs / Journal of Computational Physics 201 (2004) 573–585 577
We can now compare with the matrix algorithm mentioned in Section 1. If we define
yi ¼
xiþ1

xi

� �
; ai ¼

ai bi
1 0

� �
; ð12Þ
then
yi ¼
xiþ1

xi

� �
¼

ai bi
1 0

� �
xi
xi�1

� �
¼ aiyi�1 ð13Þ
and the end member of the sequence is given by
xNþ1

xN

� �
¼ yN ¼ aNaN�1aN�2 � � � a1

x1
x0

� �
: ð14Þ
The multiplication of matrices can be done pairwise on different processors. The first multiplication of the

simple matrices can be done with two multiplications and one addition but this operation generates full

two-by-two matrices so that the second step in the pairwise reduction of the multi-factor product is a com-

plete matrix multiplication and requires eight multiplications and four additions. When compared with the

two multiplications and one addition necessary to actually do the iteration, one sees that there is a cost of a

factor of 4 which is paid in this case. Assuming 12 operations for all steps the maximum speed up with M

processors is M/4. The matrix algorithm gives only the end point of the sequence (i.e., not the intermediate
values) so is to be compared with M/2 from the algorithm just presented. With a modest number of proc-

essors, over half of the time of the matrix algorithm is spent in the first set of multiplications so that con-

siderable savings can be achieved by considering the special case for the first operation.

This cost factor is not the only problem. The work done in each matrix multiplication is not very much

(12 floating point operations). Hence, communication must take place between processors very often so

that message passing time may dominate.

Another possible problem is that often the entire sequence of xi is needed. This algorithm simply does

not give it.

2.2. Inhomogeneous recursion relation

For the inhomogeneous recursion,
xiþ1 ¼ aixi þ bixi�1 þ ci; ð15Þ

three basis solutions are needed to provide a general representation. For the third basis function, we can
take z00i , defined to have the starting conditions z00lL ¼ z00lLþ1 ¼ 0. The general form of the solution is thus
xi ¼ az10i þ bz01i þ cz00i ; ð16Þ

where z10i ; z

01
i and z00i all separately satisfy Eq. (15). The requirement that this form satisfies the recursion

relation is a+b+c=1.

Using this last expression to replace c, we can write
xi ¼ aðz10i � z00i Þ þ bðz01i � z00i Þ þ z00i : ð17Þ

It is easy to show that
y10i � z10i � z00i and y01i � z01i � z00i ð18Þ
satisfy the homogeneous equation (i.e., with ci=0) with the same starting points as the z10i and z01i , exactly as
in the homogeneous case treated before. Thus, the general form can be written as

578 W.R. Gibbs / Journal of Computational Physics 201 (2004) 573–585
xi ¼ ay10i þ by01i þ z00i ; ð19Þ

where y10i and y01i can be calculated as in the previous section, i.e., without reference to ci.

The procedure in this case is first to calculate in parallel (either along with the lyijk or separately) the

(long) recursion
lz00kþ1 ¼ alLþk
lz00k þ blLþk

lz00k�1 þ clLþk; k ¼ 1; 2; 3; . . . ; L; ½l ¼ 0; 1; . . . ;M � 1�: ð20Þ
Since both starting values of lz00k are zero, the values of the coefficients of y10i and y01i are again just the last

values from the previous processor so that the equations
xðlþ1ÞL ¼ xlLly10L þ xlLþ1
ly01L þ lz00L ; xðlþ1ÞLþ1 ¼ xlLly10Lþ1 þ xlLþ1

ly01Lþ1 þ lz00Lþ1

� �
l¼0;1;...;M�2

ð21Þ
or in processor notation,
ðlþ1Þx0 ¼ lx0ly10L þ lx1ly01L þ lz00L ;
ðlþ1Þx1 ¼ lx0ly10Lþ1 þ lx1ly01Lþ1 þ lz00Lþ1

� �
l¼0;1;...;M�2

ð22Þ
need to be evaluated in a (short) sequential calculation.

If needed, the intermediate values in the recursive sequence can now be evaluated in parallel. These will

be given by
xlLþk ¼ xlLly10k þ xlLþ1
ly01k þ lz00k ; k ¼ 2; 3; . . . ; Lþ 1; ½l ¼ 0; 1; . . . ;M � 1� ð23Þ
or
lxk ¼ lx0ly10k þ lx1ly01k þ lz00k ; k ¼ 2; 3; . . . ; Lþ 1; ½l ¼ 0; 1; . . . ;M � 1�: ð24Þ

If the recursion relation is needed for a large number of functions, ci, with the same ai and bi, then the basis

functions y10 and y01 need be calculated only once.
3. Applications

3.1. Eigenvalues of a tri-diagonal matrix

The process of finding eigenvalues of a real tri-diagonal matrix plays a central role in the solution of the

eigenvalue problem of more general real symmetric matrices. Commonly, algorithms are converted to a

parallel environment either by having each processor search for an eigenvalue (method A) [2] or finding

all of the eigenvalues by means of divide-and-conquer algorithms (method B) [3]. It is often useful be able
to pick out only a few of the eigenvalues (the lowest ones) which is the case considered here.

For a symmetric tri-diagonal matrix,
A ¼

a1 b1 0 0 0 � � �
b1 a2 b2 0 0 . . .

0 b2 a3 b3 0 � � �
� � �
� � � bN�2 aN�1 bN�1 0

� � � 0 bN�1 aN bN
� � � 0 0 bN aNþ1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

ð25Þ
there exists a well-known solution for the eigenvalues, K, (see, for example, [4,2]) based on Sturm sequences

with bisection which allows the selection of eigenvalues. With the definition

W.R. Gibbs / Journal of Computational Physics 201 (2004) 573–585 579
x0 ¼ 1; x1 ¼ a1 � K ð26Þ

the recursion relation
xiþ1 ¼ ðaiþ1 � KÞxi � b2i xi�1 ð27Þ
generates the determinant, D(K), of A�KI as the value of xN+1. The eigenvalues of A can be found by lo-

cating the zeros of D(K). Furthermore, the number of sign differences between successive members in the

recursion sequence identifies the eigenvalues in order. For example, the lowest eigenvalue occurs at the tran-
sition from 0 to 1 sign differences in the sequence. The desired transition (and hence eigenvalue) can be

found with Newton�s method of bisecting some Kmin and Kmax at each step.

Implementing this recursion in a parallel fashion is straightforward using the algorithm given in Section

2.1. In order to calculate the number of sign differences, the individual members of the sequence need to be

generated which requires the long form of the algorithm, thus seeming to cost a factor of 4 compared to a

non-parallelized version. However, a hybrid method makes the cost factor closer to 2 than 4. When the dif-

ference in sign count has been reduced to unity between Kmin and Kmax it is known that a single eigenvalue

lies in this region and that it is the correct one. From this point on, the method needs only the final value of
the sequence (the determinant itself) which requires only half the time.

Hence, the algorithm can be thought of as proceeding in two phases. In the first phase, the desired ei-

genvalue is isolated by finding two values of the estimated eigenvalue with only a single zero of the deter-

minant between them. After that, in the second phase, only the value of the determinant is needed and with

those values one can estimate a new trial value more efficiently than a simple bisection by using
K ¼ Kmin j DðKmaxÞ j þKmax j DðKminÞ j
j DðKmaxÞ j þ j DðKminÞ j

: ð28Þ
Onemust be careful of the convergence, since it may come about with the trial eigenvalue approaching one of

the limit eigenvalueswithout the two limits approaching eachother. This improvement in efficiency is available

to either the parallel or non-parallel version and tends to make the first phase dominant in time consumed.

A common method of implementing this general algorithm on parallel computers is to simply give each

processor an eigenvalue to find (methodA above). In this case, each eigenvalue is obtained in a purely sequen-

tial fashion but the values arrive in a parallel manner. In the present algorithm, each eigenvalue is calculated in

a parallel manner and the values arrive one after the other. One improvement which is not generally available
tomethodA is due to the availability of useful information after the first and subsequent eigenvalues are found

in the first phase. It is only necessary to keep a table of the tested values ofK vs. the corresponding number of

sign differences.When the next eigenvalue is to be found, the table can be searched for the closest starting val-

ues. This table grows as the eigenvalues are found. If each processor is finding an eigenvalue starting from the

outer bounds of the eigenvalue sequence this advantage is not available.

An important consideration in this algorithm (parallel or non-parallel) is the growing of the values with

each step so that overflow occurs. One can solve that problem by performing a renormalization at regular in-

tervals. In the non-parallel version, when the value of xi+1 is observed to exceed some predefined value then
both xi+1 and xi are multiplied by an appropriate constant reducing factor. This does not change the number

of relative sign differences nor the sign of the last value. For the parallel version, both basis functions can be

renormalized in the sameway (bothmust be done at the same time) and the recursion is not destroyed since it is

only the relative values of the basis functions which determines the number of sign differences and the sign of

the final value. In the version tested here, a check for renormalization was made every 16 steps.

The algorithm was calculated for the matrix defined by
2
ai ¼ 0; i ¼ 1; 2; . . .N þ 1; bi ¼ iðN þ 1� iÞ; i ¼ 1; 2; . . .N ; ð29Þ

580 W.R. Gibbs / Journal of Computational Physics 201 (2004) 573–585
with N even. The eigenvalues are known to be the even integers from �N to N as presented in [2,5]. In ad-

dition to the renormalization mentioned above, the entire system was renormalized such that the smallest b2i
was unity. Calculations were made for matrices of size up to N=10,240,000 finding eigenvalues to an ac-

curacy of 1 part in 1011. The method was tested on a Beowulf cluster with a 100 Mbit Ethernet (using

MPICH [6,7]) and the scaling efficiency [defined as T1/(MTM), where TM is the time for execution on M

processors] exceeded 0.96 up through 4 processors.

The ‘‘cost’’ of the method was calculated by comparing one-processor versions of the present algo-

rithm with a simple sequential calculation but with the present algorithm taking advantage of the in-

formation contained in the table of the number of sign differences vs. trial K. For a single eigenvalue,

the present method takes about 2.5 times longer than method A. For five eigenvalues, it still takes

about 20% longer. For 10 eigenvalues, it is 0.85 as long, for 20 it is 0.72 as long and for 40 it requires

0.64 of the time for method A.

Procedure A also may suffer from an incommensurability with the number of processors. If one wishes 8
eigenvalues with 64 processors then only 1/8 of the capacity of the machine is being used. The calculation of

the relative efficiency of the methods can be quite complicated, however. For example, if one wishes 16 ei-

genvalues with 8 processors then two passes will be made with method A and in the second pass tables of

values accumulated in the first pass can be used. Incorporating this information could well make method A

faster.

3.2. Solving wave equations

Wave equations (the Schrödinger equation is considered here) can be solved, after an expansion in Leg-

endre polynomials, by means of one-dimensional second-order differential equations. An accurate solution

can be obtained with Noumerov�s method where the iteration equations for the reduced wavefunction are

given by
wiþ1 ¼
2wi � wi�1 � h2

12
10wiwi þ wi�1wi�1½ �

1þ h2

12
wiþ1

; ð30Þ
where
wðrÞ ¼ k2 � 2m

�h2
V ðrÞ � ‘ð‘þ 1Þ

r2
ð31Þ
and h is the spacing in the radial variable r.

This form is converted readily into that considered in Section 2.1 with much of the work of the compu-

tation of ai and bi being done before the iteration. Keeping k2 as a free parameter and precomputing one

vector
1� h2
2m

�h2
V ðrÞ þ ‘ð‘þ 1Þ

r2

� �� �
the calculation of ai and bi requires seven floating point operations. Given that each iteration requires an

additional three operations, we might expect that the parallel algorithm involves a cost of an increase from

10 to 13 operations or about 30% over the purely sequential one.

In the present case, the Schrödinger equation is solved for a bound state. The solution is started at the origin
with zero for the first point and an arbitrary value for the second point and a search is made for a value of the

energy (expressed here as k2=2mE/�h2) that causes the wavefunction at some large value of r to be zero.

The problem was treated with a near maximum precomputation of the values of ai and bi. Clearly, if

one chooses not to compute as much as possible in advance, and hence to spend a larger amount of time

in the computation of the coefficients, then the addition of a second iteration (the expense of this algo-

W.R. Gibbs / Journal of Computational Physics 201 (2004) 573–585 581
rithm) would make less difference. Thus, a true test of the algorithm relies on a realistic degree of

precomputation.

The calculation was coded and tested for ‘=2. The number of steps taken was 25.2·106. Because of the
boundary conditions of the problem (reduced wavefunction zero at the origin) the calculation of the basis

function y10 is not needed in the first processor. By comparing a one-processor calculation with it computed
or not it was found that the cost factor of the algorithm was 1.31, in agreement with the 30% increase es-

timated above. The method was tested on the Beowulf cluster and no decrease in scaling efficiency was seen

through 16 processors.

3.3. Tri-diagonal matrix solution

Consider the recursive solution to a tri-diagonal matrix (size N+2), at first without any parallelism.
a0 e0 0 0 0 � � �
b1 a1 e1 0 0 � � �
0 b2 a2 e2 0 � � �

� � �
� � �
� � �
� � � bN�1 aN�1 eN�1 0

� � � 0 bN aN eN
� � � 0 0 bNþ1 aNþ1

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

x0
x1
x2
� � �
� � �
� � �
xN�1

xN
xNþ1

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

¼

c0
c1
c2
� � �
� � �
� � �
cN�1

cN
cNþ1

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

: ð32Þ
If any ei (let the first occurrence be at i=k) is zero then the system can be reduced to two subsystems. To see

this, observe that the first equation alone consists of one equation in two unknowns, the first two equations

correspond to two equations in three unknowns, etc. If ek=0 then adding that equation to the system in-
troduces no new unknown so the system of the first k+1 equations can be solved alone giving the value

(among others) of xk. In the remaining equations, the kth column can be taken to the right-hand side so

that they can be solved. In this case, the system is separable. For a symmetric system, if ek=0 then

bk+1=0 also and the two blocks are completely decoupled. Here, it is assumed that this is NOT the case

so that NO ei=0. Thus, we can divide all equations by ei or, equivalently, we can set ei=1 in the system

we wish to consider. Of course, the conversion of a general system to this form entails the cost of one in-

verse and two multiplications per equation on the left-hand but needs to be done only once in the case of a

number of different right-hand sides (N+1 more multiplications are necessary for each right-hand side).
For these reasons, the following system is considered:
a0 1 0 0 0 � � �
b1 a1 1 0 0 � � �
0 b2 a2 1 0 � � �

� � �
� � �
� � �
� � � bN�1 aN�1 1 0

� � � 0 bN aN 1

� � � 0 0 bNþ1 aNþ1

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

x0
x1
x2
� � �
� � �
� � �
xN�1

xN
xNþ1

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

¼

c0
c1
c2
� � �
� � �
� � �
cN�1

cN
cNþ1

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

: ð33Þ

582 W.R. Gibbs / Journal of Computational Physics 201 (2004) 573–585
Starting from the second row, the equations can be expressed as the recursion relation
xiþ1 ¼ �aixi � bixi�1 þ ci; i ¼ 1; 2; 3; . . . ;N � 1;N ; ð34Þ

where neither the first nor last equations have been used.

The three basis solutions discussed in Section 2.2 (called here f 10
i ; f 01

i and g00i) can be used to provide

‘‘global’’ basis functions (global in the sense that they represent the full recursion sequence to be distin-

guished from the strip functions to be discussed shortly) to express the solution. The first two basis solu-

tions do not involve ci and need only be calculated once for many right-hand sides. Thus, the solution

separates into two parts, somewhat similar to the common factorization and back substitution methods.

Once we have the basis solutions, we can apply the conditions implied by the first and last equation to de-

termine the coefficients a and b in Eq. (19). For the first equation, we have
a0x0 þ x1 ¼ a0ðaf 10
0 þ bf 01

0 þ g000 Þ þ af 10
1 þ bf 01

1 þ g001 ¼ c0 ð35Þ

or
a0aþ b ¼ c0: ð36Þ

From the last equation, we have
aNþ1xNþ1 þ bNþ1xN ¼ aNþ1ðaf 10
Nþ1 þ bf 01

nþ1 þ g00Nþ1Þ þ bNþ1ðaf 10
N þ bf 01

N þ g00N Þ ¼ cNþ1 ð37Þ
or
aðaNþ1f 10
Nþ1 þ bNþ1f 10

N Þ þ bðaNþ1f 01
Nþ1 þ bNþ1f 01

N Þ ¼ cNþ1 � aNþ1g00Nþ1 � bNþ1g00N : ð38Þ
From these two equations, we obtain a and b and all values of xi can be obtained from Eq. (19).

As an alternative to Eq. (38), one can iterate one further step with Eq. (34) to obtain f 10
Nþ2; f 01

Nþ2 and g00Nþ2

and use the condition that xN+2=0 to find
af 10
Nþ2 þ bf 01

Nþ2 ¼ �g00Nþ2: ð39Þ
Returning to the parallel considerations, we can express the global basis functions in terms of the strip basis
solutions in each processor, obtain the three global functions that were used in the above algorithm and

then calculate the solution. However, it is much more efficient to combine the two operations.

First write the global recursion basis functions in terms of the strip basis functions
f 10
lLþk ¼ la10ly10k þ lb10ly01k ; ð40Þ

f 01
lLþk ¼ la01ly10k þ lb01ly01k ; ð41Þ

g00lLþk ¼ la00ly10k þ lb00ly01k þ lz00k ; ð42Þ
where the la and lb are to be obtained from the matching conditions for l=1,2, . . .,M�1.
la10 ¼ l�1a10l�1y10L þ l�1b10l�1y01L ; ð43Þ

lb10 ¼ l�1a10l�1y10Lþ1 þ l�1b10l�1y01Lþ1; ð44Þ

la01 ¼ l�1a01l�1y10L þ l�1b01l�1y01L ; ð45Þ

lb01 ¼ l�1a01l�1y10Lþ1 þ l�1b01l�1y01Lþ1; ð46Þ

la00 ¼ l�1a00l�1y10L þ l�1b00l�1y01L þl�1z00L ; ð47Þ

W.R. Gibbs / Journal of Computational Physics 201 (2004) 573–585 583
lb00 ¼ l�1a00l�1y10Lþ1 þ l�1b00l�1y01Lþ1þl�1z00Lþ1; ð48Þ
with the starting values
0a10 ¼ 1; 0a01 ¼ 0; 0b10 ¼ 0; 0b01 ¼ 1; 0a00 ¼ 0b00 ¼ 0: ð49Þ

Using the last two values of the global basis functions calculated from Eqs. (40)–(42), we can solve for the

global a and b (from Eqs. (36) and (38)) to write
xlLþk ¼ laly10k þlbly01k þ lz00k ; k ¼ 2; 3; . . . ; Lþ 1 ½l ¼ 0; 1; . . . ;M � 1�; ð50Þ

where the coefficients are given by
la ¼ ala10 þ bla01 þ la00; ð51Þ

lb ¼ alb10 þ blb01 þ lb00: ð52Þ

It is common to compare the relative speed of any algorithm for solving tri-diagonal matrices with Gaus-

sian Elimination (GE) which is relatively efficient. For this case, GE becomes first for the LU reduction
d0 ¼ 1=a0

gi ¼ bidi�1; di ¼ 1=ðai � giÞ; i ¼ 1; 2; . . . ;N þ 1; ð53Þ

followed by the two back substitutions
zg0 ¼ c0; zgi ¼ ci � giz
g
i�1; i ¼ 1; 2; . . . ;N þ 1 ð54Þ
and
xgNþ1 ¼ zgNþ1; xgi ¼ ðzgi � xgiþ1Þdi; i ¼ N ;N � 1; . . . ; 0: ð55Þ
If we assume that the equations are being solved for many right-hand sides, then we should compare the
time for the solutions of the z00 equations and the calculation of the vector (Eqs. (20) and (50)) with the

work of the two back substitutions in GE (Eqs. (54) and (55)). A first estimation can be made for the rel-

ative speed by counting the number of floating point operations per step (4 for GE and 8 for the parallel

algorithm) to get a cost factor of 2. This is only a very crude estimate since the form of the equations is

different. For example, (50) requires only the broadcast of a scalar instead of vector multiplication. Opti-

mization or not of the G77 compiler was observed to make a large difference also. With no optimizing GE

does better than this estimate giving a cost factor of 2.6. However, with optimization, the efficiency of the

parallel method is improved more than GE to result in a cost factor of 1.4.
To save on message passing for the resultant vector, one may want to use the strips in the processor in

which they were formed. In some cases, it may be more efficient never to construct the vectors at all. As an

example of such a case, consider the problem of solving the set of equations for a large number of different

right-hand side vectors which are a function of some parameter, g, hence, ci(g). Suppose also that we wish

the sum (an integral perhaps) of some weighting function over the solution
SðgÞ ¼
XNþ1

i¼0

wixiðgÞ ð56Þ
as a function of g. The sum can be distributed among the strip basis functions in the processors via Eq. (50).
The y basis function integrals need be calculated only once. The z00 integral can be calculated as this basis

function is generated. Only the strip integrals need to be sent to the master processor to be combined with

the coefficients la and lb. The calculation of the solution (Eq. (50)) is not needed. In this special case, a

count of the number of floating point operations estimates the speed to be the same as GE (in the limit

584 W.R. Gibbs / Journal of Computational Physics 201 (2004) 573–585
of large N and large number of values of g). In one-processor tests, because of the simplicity of the equa-

tions mentioned above, the strip algorithm was found to run somewhat faster than GE.

Large systems (720,720·k with k=10,20,40,80,and 160) with 100 values of g were tested on the 16 proc-

essor Beowulf cluster. Essentially no degradation of performance was seen with all scaling efficiencies

P 0.99. The largest system tested (N=115,315,200) could only be run by spreading the solution basis vec-
tors over 13 processors.

A common algorithm discussed in the literature is the parallel cyclic reduction of a matrix [8]. The basic

cost of this algorithm has been reported to be a factor of 4 [9,10]. It requires frequent exchange of infor-

mation and is not very efficient for multiple right-hand sides. The ‘‘divide-and-conquer’’ method [8] is also

inefficient for multiple driving terms. Hence, the technique presented here would seem to offer an attractive

alternative to these methods in some cases.

The restriction to ei„0 may prove to be inconvenient in some cases or the division may lead to large er-

rors. Tests with ei”1 showed that the stability of the method was as good or better than GE.

4. Discussion

These algorithms may also be useful on vector machines. For a processor with a 64 word vector register,

for the case of the homogeneous recursion relation, the total length can be broken into 32 strips with each

pair of words in the vector register acting as a processor. Thus, the iteration might take place as
y10iþ1

y01iþ1

y10Lþiþ1

y01Lþiþ1

� � �
� � �

y10lLþiþ1

y01lLþiþ1

� � �
� � �

y1031Lþiþ1

y0131Lþiþ1

0
BBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCA

¼

ai
ai
aLþi

aLþi

� � �
� � �
alLþi

alLþi

� � �
� � �

a31Lþi

a31Lþi

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCA

�

y10i
y01i
y10Lþi

y01Lþi

� � �
� � �
y10lLþi

y01lLþi

� � �
� � �

y1031Lþi

y0131Lþi

0
BBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCA

þ

bi
bi
bLþi

bLþi

� � �
� � �
blLþi

blLþi

� � �
� � �

b31Lþi

b31Lþi

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCA

�

y10i�1

y01i�1

y10Lþi�1

y01Lþi�1

� � �
� � �

y10lLþi�1

y01lLþi�1

� � �
� � �

y1031Lþi�1

y0131Lþi�1

0
BBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCA

ð57Þ
for i=1,2, . . .,L.
The method can be generalized for a larger number of terms in the iteration (leading to larger width in

banded matrices, for example).
There are clearly some limitations to the application of the algorithm. The conversion to a parallel system

does not work for recursions nonlinear in xi so most classical mechanics calculations are not possible with it.

While the problems treated are different, this method appears to have some overlap with the Domain

Decomposition techniques for the solution of elliptic differential equations [11].

Acknowledgements

I thank Slava Solomatov for discussions and Alexei Vezolainen for help with one of Beowulf clusters in

the Department of Physics. This work was supported by the National Science Foundation under Contract

PHY-0099729.

W.R. Gibbs / Journal of Computational Physics 201 (2004) 573–585 585
References

[1] Jagdish J. Modi, Parallel Algorithms and Matrix Computation, Claredon Press, Oxford, 1988.

[2] A. Basermann, P. Weidner, A parallel algorithm for determining all eigenvalues of large real symmetric tridiagonal matrices,

Parallel Computing 18 (1992) 1129–1141.

[3] F. Tisseur, J. Dongarra, A parallel divide and conquer algorithm for the symmetric eigenvalue problem on distributed memory

architectures, SIAM J. Sci Comput. 20 (1999) 2223–2236.

[4] W.R. Gibbs, Computation in Modern Physics, World Scientific Publishing, Singapore, 1999.

[5] R.T. Gregory, D.L. Karney, A Collection of Matrices for Testing Computational Algorithms, Krieger Publ. Huntington, NY,

1978.

[6] W. Gropp, E. Lusk, N. Doss, A. Skjellum, Parallel Computing 22 (1996) 789.

[7] William D. Gropp, Ewing Lusk, User�s Guide for mpich, a Portable Implementation of MPI, ANL-96/6, 1996.

[8] Duc Thai Nguyen, Parallel-Vector Equation Solvers for Finite Element Engineering Applications, Kluwer Academic/Plenum

Publishers, 2002.

[9] I.N. Hajj, S. Skelboe, A multilevel parallel solver for block tridiagonal and banded linear systems, Parallel Computing 15 (1989)

21–45.

[10] F. Reale, A tridiagonal solver for massively parallel computer systems, Parallel Computing 16 (1990) 361–368.

[11] P.J. Roache, Elliptic Marching Methods and Domain Decomposition, CRC Press, 1995.

	A parallel/recursive algorithm
	Introduction
	General description of the algorithm
	Homogeneous case
	Inhomogeneous recursion relation

	Applications
	Eigenvalues of a tri-diagonal matrix
	Solving wave equations
	Tri-diagonal matrix solution

	Discussion
	Acknowledgements
	References

